vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

e_asin.c (3598B)


      1 /* @(#)e_asin.c 5.1 93/09/24 */
      2 /*
      3  * ====================================================
      4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5  *
      6  * Developed at SunPro, a Sun Microsystems, Inc. business.
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 
     13 #ifndef lint
     14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_asin.c,v 1.10 2003/07/23 04:53:46 peter Exp $";
     15 #endif
     16 
     17 /* __ieee754_asin(x)
     18  * Method :
     19  *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
     20  *	we approximate asin(x) on [0,0.5] by
     21  *		asin(x) = x + x*x^2*R(x^2)
     22  *	where
     23  *		R(x^2) is a rational approximation of (asin(x)-x)/x^3
     24  *	and its remez error is bounded by
     25  *		|(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
     26  *
     27  *	For x in [0.5,1]
     28  *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
     29  *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
     30  *	then for x>0.98
     31  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
     32  *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
     33  *	For x<=0.98, let pio4_hi = pio2_hi/2, then
     34  *		f = hi part of s;
     35  *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
     36  *	and
     37  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
     38  *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
     39  *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
     40  *
     41  * Special cases:
     42  *	if x is NaN, return x itself;
     43  *	if |x|>1, return NaN with invalid signal.
     44  *
     45  */
     46 
     47 
     48 #include "math.h"
     49 #include "math_private.h"
     50 
     51 static const double
     52 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
     53 huge =  1.000e+300,
     54 pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
     55 pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
     56 pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
     57 	/* coefficient for R(x^2) */
     58 pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
     59 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
     60 pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
     61 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
     62 pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
     63 pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
     64 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
     65 qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
     66 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
     67 qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
     68 
     69 double
     70 __ieee754_asin(double x)
     71 {
     72 	double t=0.0,w,p,q,c,r,s;
     73 	int32_t hx,ix;
     74 	GET_HIGH_WORD(hx,x);
     75 	ix = hx&0x7fffffff;
     76 	if(ix>= 0x3ff00000) {		/* |x|>= 1 */
     77 	    u_int32_t lx;
     78 	    GET_LOW_WORD(lx,x);
     79 	    if(((ix-0x3ff00000)|lx)==0)
     80 		    /* asin(1)=+-pi/2 with inexact */
     81 		return x*pio2_hi+x*pio2_lo;
     82 	    return (x-x)/(x-x);		/* asin(|x|>1) is NaN */
     83 	} else if (ix<0x3fe00000) {	/* |x|<0.5 */
     84 	    if(ix<0x3e400000) {		/* if |x| < 2**-27 */
     85 		if(huge+x>one) return x;/* return x with inexact if x!=0*/
     86 	    } else
     87 		t = x*x;
     88 		p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
     89 		q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
     90 		w = p/q;
     91 		return x+x*w;
     92 	}
     93 	/* 1> |x|>= 0.5 */
     94 	w = one-fabs(x);
     95 	t = w*0.5;
     96 	p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
     97 	q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
     98 	s = __ieee754_sqrt(t);
     99 	if(ix>=0x3FEF3333) { 	/* if |x| > 0.975 */
    100 	    w = p/q;
    101 	    t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
    102 	} else {
    103 	    w  = s;
    104 	    SET_LOW_WORD(w,0);
    105 	    c  = (t-w*w)/(s+w);
    106 	    r  = p/q;
    107 	    p  = 2.0*s*r-(pio2_lo-2.0*c);
    108 	    q  = pio4_hi-2.0*w;
    109 	    t  = pio4_hi-(p-q);
    110 	}
    111 	if(hx>0) return t; else return -t;
    112 }