vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

e_jnf.c (4830B)


      1 /* e_jnf.c -- float version of e_jn.c.
      2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
      3  */
      4 
      5 /*
      6  * ====================================================
      7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      8  *
      9  * Developed at SunPro, a Sun Microsystems, Inc. business.
     10  * Permission to use, copy, modify, and distribute this
     11  * software is freely granted, provided that this notice
     12  * is preserved.
     13  * ====================================================
     14  */
     15 
     16 #ifndef lint
     17 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jnf.c,v 1.8 2002/05/28 18:15:04 alfred Exp $";
     18 #endif
     19 
     20 #include "math.h"
     21 #include "math_private.h"
     22 
     23 static const float
     24 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
     25 two   =  2.0000000000e+00, /* 0x40000000 */
     26 one   =  1.0000000000e+00; /* 0x3F800000 */
     27 
     28 static const float zero  =  0.0000000000e+00;
     29 
     30 float
     31 __ieee754_jnf(int n, float x)
     32 {
     33 	int32_t i,hx,ix, sgn;
     34 	float a, b, temp, di;
     35 	float z, w;
     36 
     37     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
     38      * Thus, J(-n,x) = J(n,-x)
     39      */
     40 	GET_FLOAT_WORD(hx,x);
     41 	ix = 0x7fffffff&hx;
     42     /* if J(n,NaN) is NaN */
     43 	if(ix>0x7f800000) return x+x;
     44 	if(n<0){
     45 		n = -n;
     46 		x = -x;
     47 		hx ^= 0x80000000;
     48 	}
     49 	if(n==0) return(__ieee754_j0f(x));
     50 	if(n==1) return(__ieee754_j1f(x));
     51 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
     52 	x = fabsf(x);
     53 	if(ix==0||ix>=0x7f800000) 	/* if x is 0 or inf */
     54 	    b = zero;
     55 	else if((float)n<=x) {
     56 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
     57 	    a = __ieee754_j0f(x);
     58 	    b = __ieee754_j1f(x);
     59 	    for(i=1;i<n;i++){
     60 		temp = b;
     61 		b = b*((float)(i+i)/x) - a; /* avoid underflow */
     62 		a = temp;
     63 	    }
     64 	} else {
     65 	    if(ix<0x30800000) {	/* x < 2**-29 */
     66     /* x is tiny, return the first Taylor expansion of J(n,x)
     67      * J(n,x) = 1/n!*(x/2)^n  - ...
     68      */
     69 		if(n>33)	/* underflow */
     70 		    b = zero;
     71 		else {
     72 		    temp = x*(float)0.5; b = temp;
     73 		    for (a=one,i=2;i<=n;i++) {
     74 			a *= (float)i;		/* a = n! */
     75 			b *= temp;		/* b = (x/2)^n */
     76 		    }
     77 		    b = b/a;
     78 		}
     79 	    } else {
     80 		/* use backward recurrence */
     81 		/* 			x      x^2      x^2
     82 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
     83 		 *			2n  - 2(n+1) - 2(n+2)
     84 		 *
     85 		 * 			1      1        1
     86 		 *  (for large x)   =  ----  ------   ------   .....
     87 		 *			2n   2(n+1)   2(n+2)
     88 		 *			-- - ------ - ------ -
     89 		 *			 x     x         x
     90 		 *
     91 		 * Let w = 2n/x and h=2/x, then the above quotient
     92 		 * is equal to the continued fraction:
     93 		 *		    1
     94 		 *	= -----------------------
     95 		 *		       1
     96 		 *	   w - -----------------
     97 		 *			  1
     98 		 * 	        w+h - ---------
     99 		 *		       w+2h - ...
    100 		 *
    101 		 * To determine how many terms needed, let
    102 		 * Q(0) = w, Q(1) = w(w+h) - 1,
    103 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
    104 		 * When Q(k) > 1e4	good for single
    105 		 * When Q(k) > 1e9	good for double
    106 		 * When Q(k) > 1e17	good for quadruple
    107 		 */
    108 	    /* determine k */
    109 		float t,v;
    110 		float q0,q1,h,tmp; int32_t k,m;
    111 		w  = (n+n)/(float)x; h = (float)2.0/(float)x;
    112 		q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
    113 		while(q1<(float)1.0e9) {
    114 			k += 1; z += h;
    115 			tmp = z*q1 - q0;
    116 			q0 = q1;
    117 			q1 = tmp;
    118 		}
    119 		m = n+n;
    120 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
    121 		a = t;
    122 		b = one;
    123 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
    124 		 *  Hence, if n*(log(2n/x)) > ...
    125 		 *  single 8.8722839355e+01
    126 		 *  double 7.09782712893383973096e+02
    127 		 *  long double 1.1356523406294143949491931077970765006170e+04
    128 		 *  then recurrent value may overflow and the result is
    129 		 *  likely underflow to zero
    130 		 */
    131 		tmp = n;
    132 		v = two/x;
    133 		tmp = tmp*__ieee754_logf(fabsf(v*tmp));
    134 		if(tmp<(float)8.8721679688e+01) {
    135 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
    136 		        temp = b;
    137 			b *= di;
    138 			b  = b/x - a;
    139 		        a = temp;
    140 			di -= two;
    141 	     	    }
    142 		} else {
    143 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
    144 		        temp = b;
    145 			b *= di;
    146 			b  = b/x - a;
    147 		        a = temp;
    148 			di -= two;
    149 		    /* scale b to avoid spurious overflow */
    150 			if(b>(float)1e10) {
    151 			    a /= b;
    152 			    t /= b;
    153 			    b  = one;
    154 			}
    155 	     	    }
    156 		}
    157 	    	b = (t*__ieee754_j0f(x)/b);
    158 	    }
    159 	}
    160 	if(sgn==1) return -b; else return b;
    161 }
    162 
    163 float
    164 __ieee754_ynf(int n, float x)
    165 {
    166 	int32_t i,hx,ix,ib;
    167 	int32_t sign;
    168 	float a, b, temp;
    169 
    170 	GET_FLOAT_WORD(hx,x);
    171 	ix = 0x7fffffff&hx;
    172     /* if Y(n,NaN) is NaN */
    173 	if(ix>0x7f800000) return x+x;
    174 	if(ix==0) return -one/zero;
    175 	if(hx<0) return zero/zero;
    176 	sign = 1;
    177 	if(n<0){
    178 		n = -n;
    179 		sign = 1 - ((n&1)<<1);
    180 	}
    181 	if(n==0) return(__ieee754_y0f(x));
    182 	if(n==1) return(sign*__ieee754_y1f(x));
    183 	if(ix==0x7f800000) return zero;
    184 
    185 	a = __ieee754_y0f(x);
    186 	b = __ieee754_y1f(x);
    187 	/* quit if b is -inf */
    188 	GET_FLOAT_WORD(ib,b);
    189 	for(i=1;i<n&&ib!=0xff800000;i++){
    190 	    temp = b;
    191 	    b = ((float)(i+i)/x)*b - a;
    192 	    GET_FLOAT_WORD(ib,b);
    193 	    a = temp;
    194 	}
    195 	if(sign>0) return b; else return -b;
    196 }