vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

s_fma.c (5003B)


      1 /*-
      2  * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  *
     14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     24  * SUCH DAMAGE.
     25  */
     26 
     27 #include <fenv.h>
     28 #include <float.h>
     29 #include <math.h>
     30 
     31 /*
     32  * Fused multiply-add: Compute x * y + z with a single rounding error.
     33  *
     34  * We use scaling to avoid overflow/underflow, along with the
     35  * canonical precision-doubling technique adapted from:
     36  *
     37  *	Dekker, T.  A Floating-Point Technique for Extending the
     38  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
     39  *
     40  * This algorithm is sensitive to the rounding precision.  FPUs such
     41  * as the i387 must be set in double-precision mode if variables are
     42  * to be stored in FP registers in order to avoid incorrect results.
     43  * This is the default on FreeBSD, but not on many other systems.
     44  *
     45  * Tests on an Itanium 2 indicate that the hardware's FMA instruction
     46  * is almost twice as fast as this implementation.  The hardware
     47  * instruction should be used on platforms that support it.
     48  *
     49  * XXX May incur an absolute error of 0x1p-1074 for subnormal results
     50  *     due to double rounding induced by the final scaling operation.
     51  *
     52  * XXX On machines supporting quad precision, we should use that, but
     53  *     see the caveat in s_fmaf.c.
     54  */
     55 double
     56 fma(double x, double y, double z)
     57 {
     58 	static const double split = 0x1p27 + 1.0;
     59 	double xs, ys, zs;
     60 	double c, cc, hx, hy, p, q, tx, ty;
     61 	double r, rr, s;
     62 	int oround;
     63 	int ex, ey, ez;
     64 	int spread;
     65 
     66 	if (x == 0.0 || y == 0.0)
     67 		return (z);
     68 	if (z == 0.0)
     69 		return (x * y);
     70 
     71 	/* Results of frexp() are undefined for these cases. */
     72 	if (!isfinite(x) || !isfinite(y) || !isfinite(z))
     73 		return (x * y + z);
     74 
     75 	xs = frexp(x, &ex);
     76 	ys = frexp(y, &ey);
     77 	zs = frexp(z, &ez);
     78 	oround = fegetround();
     79 	spread = ex + ey - ez;
     80 
     81 	/*
     82 	 * If x * y and z are many orders of magnitude apart, the scaling
     83 	 * will overflow, so we handle these cases specially.  Rounding
     84 	 * modes other than FE_TONEAREST are painful.
     85 	 */
     86 	if (spread > DBL_MANT_DIG * 2) {
     87 		fenv_t env;
     88 		feraiseexcept(FE_INEXACT);
     89 		switch(oround) {
     90 		case FE_TONEAREST:
     91 			return (x * y);
     92 		case FE_TOWARDZERO:
     93 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
     94 				return (x * y);
     95 			feholdexcept(&env);
     96 			r = x * y;
     97 			if (!fetestexcept(FE_INEXACT))
     98 				r = nextafter(r, 0);
     99 			feupdateenv(&env);
    100 			return (r);
    101 		case FE_DOWNWARD:
    102 			if (z > 0.0)
    103 				return (x * y);
    104 			feholdexcept(&env);
    105 			r = x * y;
    106 			if (!fetestexcept(FE_INEXACT))
    107 				r = nextafter(r, -INFINITY);
    108 			feupdateenv(&env);
    109 			return (r);
    110 		default:	/* FE_UPWARD */
    111 			if (z < 0.0)
    112 				return (x * y);
    113 			feholdexcept(&env);
    114 			r = x * y;
    115 			if (!fetestexcept(FE_INEXACT))
    116 				r = nextafter(r, INFINITY);
    117 			feupdateenv(&env);
    118 			return (r);
    119 		}
    120 	}
    121 	if (spread < -DBL_MANT_DIG) {
    122 		feraiseexcept(FE_INEXACT);
    123 		if (!isnormal(z))
    124 			feraiseexcept(FE_UNDERFLOW);
    125 		switch (oround) {
    126 		case FE_TONEAREST:
    127 			return (z);
    128 		case FE_TOWARDZERO:
    129 			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
    130 				return (z);
    131 			else
    132 				return (nextafter(z, 0));
    133 		case FE_DOWNWARD:
    134 			if (x > 0.0 ^ y < 0.0)
    135 				return (z);
    136 			else
    137 				return (nextafter(z, -INFINITY));
    138 		default:	/* FE_UPWARD */
    139 			if (x > 0.0 ^ y < 0.0)
    140 				return (nextafter(z, INFINITY));
    141 			else
    142 				return (z);
    143 		}
    144 	}
    145 
    146 	/*
    147 	 * Use Dekker's algorithm to perform the multiplication and
    148 	 * subsequent addition in twice the machine precision.
    149 	 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
    150 	 */
    151 	fesetround(FE_TONEAREST);
    152 
    153 	p = xs * split;
    154 	hx = xs - p;
    155 	hx += p;
    156 	tx = xs - hx;
    157 
    158 	p = ys * split;
    159 	hy = ys - p;
    160 	hy += p;
    161 	ty = ys - hy;
    162 
    163 	p = hx * hy;
    164 	q = hx * ty + tx * hy;
    165 	c = p + q;
    166 	cc = p - c + q + tx * ty;
    167 
    168 	zs = ldexp(zs, -spread);
    169 	r = c + zs;
    170 	s = r - c;
    171 	rr = (c - (r - s)) + (zs - s) + cc;
    172 
    173 	fesetround(oround);
    174 	return (ldexp(r + rr, ex + ey));
    175 }
    176