vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

md5.c (9550B)


      1 /*
      2  * This code implements the MD5 message-digest algorithm.
      3  * The algorithm is due to Ron Rivest.  This code was
      4  * written by Colin Plumb in 1993, no copyright is claimed.
      5  * This code is in the public domain; do with it what you wish.
      6  *
      7  * Equivalent code is available from RSA Data Security, Inc.
      8  * This code has been tested against that, and is equivalent,
      9  * except that you don't need to include two pages of legalese
     10  * with every copy.
     11  *
     12  * To compute the message digest of a chunk of bytes, declare an
     13  * MD5Context structure, pass it to MD5Init, call MD5Update as
     14  * needed on buffers full of bytes, and then call MD5Final, which
     15  * will fill a supplied 16-byte array with the digest.
     16  *
     17  * Changed so as no longer to depend on Colin Plumb's `usual.h' header
     18  * definitions; now uses stuff from dpkg's config.h.
     19  *  - Ian Jackson <ijackson@nyx.cs.du.edu>.
     20  * Still in the public domain.
     21  *
     22  * Josh Coalson: made some changes to integrate with libFLAC.
     23  * Still in the public domain.
     24  */
     25 
     26 #include <stdlib.h>		/* for malloc() */
     27 #include <string.h>		/* for memcpy() */
     28 
     29 #include "private/md5.h"
     30 
     31 #ifdef HAVE_CONFIG_H
     32 #include <config.h>
     33 #endif
     34 
     35 #ifndef FLaC__INLINE
     36 #define FLaC__INLINE
     37 #endif
     38 
     39 static FLAC__bool is_big_endian_host_;
     40 
     41 #ifndef ASM_MD5
     42 
     43 /* The four core functions - F1 is optimized somewhat */
     44 
     45 /* #define F1(x, y, z) (x & y | ~x & z) */
     46 #define F1(x, y, z) (z ^ (x & (y ^ z)))
     47 #define F2(x, y, z) F1(z, x, y)
     48 #define F3(x, y, z) (x ^ y ^ z)
     49 #define F4(x, y, z) (y ^ (x | ~z))
     50 
     51 /* This is the central step in the MD5 algorithm. */
     52 #define MD5STEP(f,w,x,y,z,in,s) \
     53 	 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
     54 
     55 /*
     56  * The core of the MD5 algorithm, this alters an existing MD5 hash to
     57  * reflect the addition of 16 longwords of new data.  MD5Update blocks
     58  * the data and converts bytes into longwords for this routine.
     59  */
     60 FLaC__INLINE
     61 void
     62 FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16])
     63 {
     64 	register FLAC__uint32 a, b, c, d;
     65 
     66 	a = buf[0];
     67 	b = buf[1];
     68 	c = buf[2];
     69 	d = buf[3];
     70 
     71 	MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
     72 	MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
     73 	MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
     74 	MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
     75 	MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
     76 	MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
     77 	MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
     78 	MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
     79 	MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
     80 	MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
     81 	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
     82 	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
     83 	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
     84 	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
     85 	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
     86 	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
     87 
     88 	MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
     89 	MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
     90 	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
     91 	MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
     92 	MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
     93 	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
     94 	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
     95 	MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
     96 	MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
     97 	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
     98 	MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
     99 	MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    100 	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    101 	MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    102 	MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    103 	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
    104 
    105 	MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    106 	MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    107 	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    108 	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    109 	MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    110 	MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    111 	MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    112 	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    113 	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    114 	MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    115 	MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    116 	MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    117 	MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    118 	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    119 	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    120 	MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
    121 
    122 	MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    123 	MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    124 	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    125 	MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    126 	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    127 	MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    128 	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    129 	MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    130 	MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    131 	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    132 	MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    133 	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    134 	MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    135 	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    136 	MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    137 	MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
    138 
    139 	buf[0] += a;
    140 	buf[1] += b;
    141 	buf[2] += c;
    142 	buf[3] += d;
    143 }
    144 
    145 #endif
    146 
    147 FLaC__INLINE
    148 void
    149 byteSwap(FLAC__uint32 *buf, unsigned words)
    150 {
    151 	md5byte *p = (md5byte *)buf;
    152 
    153 	if(!is_big_endian_host_)
    154 		return;
    155 	do {
    156 		*buf++ = (FLAC__uint32)((unsigned)p[3] << 8 | p[2]) << 16 | ((unsigned)p[1] << 8 | p[0]);
    157 		p += 4;
    158 	} while (--words);
    159 }
    160 
    161 /*
    162  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
    163  * initialization constants.
    164  */
    165 void
    166 FLAC__MD5Init(struct FLAC__MD5Context *ctx)
    167 {
    168 	FLAC__uint32 test = 1;
    169 
    170 	is_big_endian_host_ = (*((FLAC__byte*)(&test)))? false : true;
    171 
    172 	ctx->buf[0] = 0x67452301;
    173 	ctx->buf[1] = 0xefcdab89;
    174 	ctx->buf[2] = 0x98badcfe;
    175 	ctx->buf[3] = 0x10325476;
    176 
    177 	ctx->bytes[0] = 0;
    178 	ctx->bytes[1] = 0;
    179 
    180 	ctx->internal_buf = 0;
    181 	ctx->capacity = 0;
    182 }
    183 
    184 /*
    185  * Update context to reflect the concatenation of another buffer full
    186  * of bytes.
    187  */
    188 void
    189 FLAC__MD5Update(struct FLAC__MD5Context *ctx, md5byte const *buf, unsigned len)
    190 {
    191 	FLAC__uint32 t;
    192 
    193 	/* Update byte count */
    194 
    195 	t = ctx->bytes[0];
    196 	if ((ctx->bytes[0] = t + len) < t)
    197 		ctx->bytes[1]++;	/* Carry from low to high */
    198 
    199 	t = 64 - (t & 0x3f);	/* Space available in ctx->in (at least 1) */
    200 	if (t > len) {
    201 		memcpy((md5byte *)ctx->in + 64 - t, buf, len);
    202 		return;
    203 	}
    204 	/* First chunk is an odd size */
    205 	memcpy((md5byte *)ctx->in + 64 - t, buf, t);
    206 	byteSwap(ctx->in, 16);
    207 	FLAC__MD5Transform(ctx->buf, ctx->in);
    208 	buf += t;
    209 	len -= t;
    210 
    211 	/* Process data in 64-byte chunks */
    212 	while (len >= 64) {
    213 		memcpy(ctx->in, buf, 64);
    214 		byteSwap(ctx->in, 16);
    215 		FLAC__MD5Transform(ctx->buf, ctx->in);
    216 		buf += 64;
    217 		len -= 64;
    218 	}
    219 
    220 	/* Handle any remaining bytes of data. */
    221 	memcpy(ctx->in, buf, len);
    222 }
    223 
    224 /*
    225  * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it.
    226  */
    227 FLAC__bool
    228 FLAC__MD5Accumulate(struct FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
    229 {
    230 	unsigned channel, sample, a_byte;
    231 	FLAC__int32 a_word;
    232 	FLAC__byte *buf_;
    233 	const unsigned bytes_needed = channels * samples * bytes_per_sample;
    234 
    235 	if(ctx->capacity < bytes_needed) {
    236 		FLAC__byte *tmp = (FLAC__byte*)realloc(ctx->internal_buf, bytes_needed);
    237 		if(0 == tmp) {
    238 			free(ctx->internal_buf);
    239 			if(0 == (ctx->internal_buf = (FLAC__byte*)malloc(bytes_needed)))
    240 				return false;
    241 		}
    242 		ctx->internal_buf = tmp;
    243 		ctx->capacity = bytes_needed;
    244 	}
    245 
    246 	buf_ = ctx->internal_buf;
    247 
    248 #ifdef FLAC__CPU_IA32
    249 	if(channels == 2 && bytes_per_sample == 2) {
    250 		memcpy(buf_, signal[0], sizeof(FLAC__int32) * samples);
    251 		buf_ += sizeof(FLAC__int16);
    252 		for(sample = 0; sample < samples; sample++)
    253 			((FLAC__int16 *)buf_)[2 * sample] = (FLAC__int16)signal[1][sample];
    254 	}
    255 	else if(channels == 1 && bytes_per_sample == 2) {
    256 		for(sample = 0; sample < samples; sample++)
    257 			((FLAC__int16 *)buf_)[sample] = (FLAC__int16)signal[0][sample];
    258 	}
    259 	else
    260 #endif
    261 	for(sample = 0; sample < samples; sample++) {
    262 		for(channel = 0; channel < channels; channel++) {
    263 			a_word = signal[channel][sample];
    264 			for(a_byte = 0; a_byte < bytes_per_sample; a_byte++) {
    265 				*buf_++ = (FLAC__byte)(a_word & 0xff);
    266 				a_word >>= 8;
    267 			}
    268 		}
    269 	}
    270 
    271 	FLAC__MD5Update(ctx, ctx->internal_buf, bytes_needed);
    272 
    273 	return true;
    274 }
    275 
    276 /*
    277  * Final wrapup - pad to 64-byte boundary with the bit pattern
    278  * 1 0* (64-bit count of bits processed, MSB-first)
    279  */
    280 void
    281 FLAC__MD5Final(md5byte digest[16], struct FLAC__MD5Context *ctx)
    282 {
    283 	int count = ctx->bytes[0] & 0x3f;	/* Number of bytes in ctx->in */
    284 	md5byte *p = (md5byte *)ctx->in + count;
    285 
    286 	/* Set the first char of padding to 0x80.  There is always room. */
    287 	*p++ = 0x80;
    288 
    289 	/* Bytes of padding needed to make 56 bytes (-8..55) */
    290 	count = 56 - 1 - count;
    291 
    292 	if (count < 0) {	/* Padding forces an extra block */
    293 		memset(p, 0, count + 8);
    294 		byteSwap(ctx->in, 16);
    295 		FLAC__MD5Transform(ctx->buf, ctx->in);
    296 		p = (md5byte *)ctx->in;
    297 		count = 56;
    298 	}
    299 	memset(p, 0, count);
    300 	byteSwap(ctx->in, 14);
    301 
    302 	/* Append length in bits and transform */
    303 	ctx->in[14] = ctx->bytes[0] << 3;
    304 	ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
    305 	FLAC__MD5Transform(ctx->buf, ctx->in);
    306 
    307 	byteSwap(ctx->buf, 4);
    308 	memcpy(digest, ctx->buf, 16);
    309 	memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
    310 	if(0 != ctx->internal_buf) {
    311 		free(ctx->internal_buf);
    312 		ctx->internal_buf = 0;
    313 		ctx->capacity = 0;
    314 	}
    315 }